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Abstract. The dynamics of a Bose-Einstein condensate is studied theoretically in a combined periodic plus
harmonic external potential. Different dynamical regimes of stable and unstable collective dipole and Bloch
oscillations are analysed in terms of a quantum mechanical pendulum model. Nonlinear interactions are
shown to counteract quantum-mechanical dephasing and lead to phase-coherent, superfluid transport.

PACS. 03.75.Lm Tunnelling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

The study of transport properties of ultra-cold atoms
in corrugated potentials has become an intensely dis-
cussed topic since the first experiments with Bose-Einstein
condensates (BECs) in optical lattices almost a decade
ago [1–16]. The observed or predicted phenomena are of-
ten discussed by concepts borrowed from the phenomenol-
ogy of extended systems. This approach led to the charac-
terisation of superfluid and insulating phases and phase
transitions [4,13], modulational instability [15,16], and
dissipative behaviour [3,14]. However, different dynamical
regimes like small-amplitude oscillations, dephasing insta-
bilities, and Bloch oscillations require different models and
analogies for their explanation.

In this work we approach the problem from a differ-
ent, somewhat holistic point of view and treat the BEC
in the external potential as a finite dynamical system. By
mapping this problem onto a simple pendulum model, we
are able to explain different dynamical regimes as well as
stabilisation and destabilisation mechanisms in a unified
approach. Specifically, we consider a cloud of ultra-cold
bosonic atoms in a one-dimensional (1D) optical lattice
with additional harmonic trapping in the lattice axis. We
further confine the analysis to the situation of a sufficiently
large number of atoms per site that quantum fluctuations
may be neglected. Typical experiments with hundreds of
atoms on the central site certainly satisfy this condition
but probably the theory still remains valid with much
lower atom numbers. This system has been discussed be-
fore in many experimental and theoretical works. A dy-
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namical “superfluid-insulator” transition has been pre-
dicted in reference [5] for a BEC on the basis of a modula-
tional instability caused by nonlinear interactions. A sim-
ilar effect of insulating behaviour, however, was observed
in noninteracting fermions [9]. The latter was interpreted
as a very different mechanism in terms of a semiclassical
pendulum model. Experiments with BECs [6,7] and fur-
ther numerical analysis [17,18] gave ambiguous results in
showing reduced mobility of bosons without revealing the
mechanism.

In this paper we study the BEC in a combined har-
monic and lattice trap by exploiting a mapping of this
system to a quantum mechanical pendulum model. This
exact mapping of the lattice dynamics of the noninteract-
ing system to a simple quantum pendulum model estab-
lishes two effects: A separatrix in the semiclassical phase
space leads to two separate regions of qualitatively differ-
ent dynamics (see Fig. 1 and discussion in Sect. 2). Fur-
thermore, dephasing occurs due to quantum-mechanical
wave packet motion. Adding non-linear interactions intro-
duces two additional effects: far away from the separatrix,
the nonlinearity counteracts the quantum dephasing of the
linear problem and thus stabilises wave packet motion. We
understand the emerging coherent wave-packet dynamics
as a signature of superfluid transport in the sense dis-
cussed in the recent literature (see, e.g. Refs. [5,6,10,11]).
Close to the separatrix and depending on the strength of
the nonlinearity, a dynamical instability destroys coherent
wave packet motion. We thus obtain a unified view of such
different phenomena as dynamical instability, dephasing,
and superfluidity. While a dynamical instability has been
predicted by a different mechanism in reference [5] and the
effect of the separatrix has been discussed in conjuction
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with fermions in reference [9], we believe that quantum
dephasing and its suppression by nonlinear interactions
has not been discussed before [19]. In addition to the sta-
bilisation of dipole oscillations, we also predict a so far
undescribed regime of coherent wave packet motion above
the separatrix. This regime could be exploited to gener-
ate the recently proposed atomic gas at negative kinetic
temperatures [20].

2 Non-interacting atoms

We begin with dynamics of non-interacting atoms, gov-
erned by the Schrödinger equation with the following
single-particle Hamiltonian

̂H =
p̂2

2M
− V0 cos2

(

2π
d
x

)

+
Mω2

2
x2. (1)

In equation (1) M is the atomic mass, V0 the depth of the
optical potential, d the lattice period, and ω the frequency
of the harmonic confinement. If the lattice potential is
large compared to the recoil energy ER = 2�

2π2/d2M ,
we may use the tight-binding ansatz for the Schrödinger
equation, ψ(x, t) =

∑

l al(t)ψl(x), where ψl(x) are the lo-
calised Wannier states. This leads to a system of coupled
linear equations for the complex amplitude al(t),

i�ȧl =
ν

2
l2al − J

2
(al+1 + al−1) , (2)

where ν = Mω2d2 and J is the hopping matrix element,
uniquely defined by the depth of the optical lattice s =
V0/ER as J/ER ∼ s3/4 exp(−2

√
s)/

√
π.

A particularly transparent description of the dynamics
governed by equation (2) is obtained by mapping it to
the mathematical pendulum [22]. Indeed, introducing the
function φ(θ, t) = 1/

√
2π

∑

l al(t) exp(ilθ), the system of
equation (2) reduces to the Schrödinger equation for the
quantum pendulum with the Hamiltonian

̂H =
ν

2
̂L2 − J cos(θ), ̂L = −i ∂

∂θ
. (3)

This problem is related to the Mathieu equation [23–26],
which is solved by well-known special functions [27]. The
full advantage of the representation (3), however, is the
easily accessible interpretation in terms of pendulum dy-
namics. A characteristic feature of the classical pendulum
is the existence of a particular trajectory — the separatrix,
which separates the vibrational and rotational regimes of
the pendulum, see Figure 1. The notion of the separatrix
can be well extended into the quantum problem [28]. It
is associated with the critical angular momentum, or the
critical site index of the original problem,

l∗ = 2(J/ν)1/2. (4)

The existence of a critical l∗ has been indicated in labora-
tory experiments [6], where the authors excite the sys-
tem by suddenly shifting the harmonic trap by a dis-
tance ∆x. Then, for l0 = ∆x/d < l∗ (for the lattice
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Fig. 1. (Color online) Phase space of the classical pendulum
in the variables l and θ. The dash-dotted lines show the sepa-
ratrix for l∗ = 40, separating rotations from oscillations. These
correspond to Bloch and dipole oscillations of a BEC, respec-
tively. Thin (grey) lines indicate classical trajectories with ini-
tial conditions θ0 = 0 and l0 = 13, 27, 50,−50. The quantum
time evolution of a Gaussian wave packet is schematised by the
50% contour line of the corresponding Wigner function [21]. Af-
ter initial displacement from equilibrium position to l0 = 27,
θ0 = 0, solutions of equations (10) are shown in anti-clockwise
order for the quantum pendulum at g = 0 (thick green con-
tours) and the interacting case at g/J = 1 (thin red contours)
at times as indicated.

parameters used in the cited experiment l∗ = 134) the
wave packet oscillates around the trap origin, while for
l0 > l∗ it sticks to one side of the parabolic potential and
the centre-of-mass position can never reach the equilib-
rium position. For g = 0 these dynamical regimes are
illustrated in Figure 2. The characteristic frequency of
the wave-packet oscillation is given by the pendulum fre-
quency Ω(l) [29]. Below the separatrix (l � l∗) we have
Ω(l) ≈ Ω0 ≡ (νJ)1/2/� = ω(M/M∗)1/2, where M∗ is
the effective mass of an atom in the lowest Bloch band.
At the separatrix Ω(l∗) = 0 and above (l � l∗) we have
Ω(l) ≈ νl/�. Note that the dynamics of the atoms for
l > l∗ can be viewed as Bloch oscillations of the atoms in
a (local) static field F = νl0/d with the Bloch frequency
ΩBO = dF/�.

In addition to the effect of the separatrix one can also
see the effect of dephasing in Figure 2, which smears out
the oscillations of the wave packet as time goes on. This
can be related to the non-equidistant spectrum of the
quantum pendulum, which is inherited from the nonlin-
ear frequency dependence Ω(l) of the classical pendulum.
If l∗ � 1, a short-time description of the dephasing can be
obtained by solving the equations of motion of the clas-
sical pendulum for an ensemble of trajectories with ini-
tial conditions scattered over the phase volume ∼ 2π�eff

with �eff = (ν/J)1/2 = 2/l∗. As a result we obtain a
t2-exponential decay for the oscillations of the mean co-
ordinate and momentum of the atoms. The dephasing is
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Fig. 2. Dynamics of non-interacting atoms (g = 0). Gray scale
images show the time evolution of the squared wave func-
tion after the ground state of the system has been suddenly
displaced by the distance ∆x at t = 0. The left and right
columns show real space and momentum space plots, respec-
tively, for ∆x/d = 8 (dipole oscillations) in the upper row and
for ∆x/d = 24 (Bloch oscillations) in the lower row. The lattice
parameters correspond to J = 2.4×10−2ER, ν = 3.2×10−4ER

(hence, l∗ = 17). The time axis is scaled by the period 2π/Ω0

of small-amplitude pendulum oscillations. Momentum is scaled
by the reciprocal lattice constant kL = 2π/d. The multiple
peak structure of the momentum-space plots is due to the pres-
ence of a periodic potential.

conveniently quantified in terms of the quantity

Ψ =
∑

l

ala
∗
l+1, (5)

which has been introduced as an “order parameter” in
reference [5]. In fact, due to the normalisation condition
∑

l ala
∗
l = 1, we find Ψ ≈ 1 when the site-to-site phase

fluctuations are small and Ψ ≈ 0 in the presence of strong
phase fluctuations. The upper left panel of Figure 4 shows
the decay of Ψ during dipole oscillations due to dephasing.

Concluding this section we note that the calculations
were done by using the continuous nonlinear Schrödinger
equation with a lattice depth of s = 12.16. For this depth
of the optical potential and the considered initial displace-
ment, the results obtained within the tight-binding ap-
proach (not shown) practically coincide with the depicted
ones. The deviation between the solutions appears only
for the initial shift l0 larger than lmax ≈ ∆/ν, where ∆
is the energy gap between the ground and first excited
Bloch bands. If l0 > lmax the Landau-Zener tunnelling
takes place and the single-particle dynamics of the atoms
is a superposition of the Bloch and dipole oscillations [30].
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Fig. 3. The same as in Figure 2 but for finite nonlinearity
g = 1.55 × 10−2ER.

3 Interacting atoms

We shall analyse the case of interacting atoms in the frame
of the 1D Gross-Pitaevskii equation,

i�
∂ψ(x, t)
∂t

= ̂Hψ(x, t) + g1D|ψ(x, t)|2ψ(x, t), (6)

where g1D ∼ as�ω⊥N , as is the s-wave scattering length,
ω⊥ the radial frequency and N the total number of atoms.
The tight-binding version of (6) reads as

i�ȧl =
ν

2
l2al − J

2
(al+1 + al−1) + g|al|2al, (7)

where g = g1D

∫ |ψl(x)|4dx ∼ as�ω⊥N/d.
The main result we want to report in this work is that a

weak nonlinearity can compensate the dephasing and the
wave packet follows the classical trajectory of the pendu-
lum without dispersion. This is illustrated in Figure 3 and
the right column of Figure 4.

3.1 Variational approach

In order to estimate the amount of nonlinearity required
to convert the quantum dynamics of the pendulum into
the ‘classical dynamics’, we use the Gaussian variational
ansatz of reference [31]. For the quantum pendulum this
amounts to a semiclassical approximation that can ac-
count for dephasing [32]. In this approach, the wave packet
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Fig. 4. (Color online) Decay of the order parameter Ψ over
time for different initial displacements l0 below l∗ = 40 (upper
panels) and above l∗ (lower panels). The panels on the left
hand side correspond to the noninteracting case (g = 0) and
the panels on the right to g/J = 1.

is parametrised as

al(t) =
√
A exp

[

− (l − L)2

γ2
+ iθ(l − L) + i

δ

2
(l − L)2

]

,

(8)
where A is a normalisation constant. Then the centre of
the wave packet L(t), the dispersion γ(t), the velocity θ(t),
and the dephasing parameter δ(t) satisfy Hamilton’s equa-
tions for the effective Hamiltonian

Heff =
ν

2

(

L2 +
γ2

4

)

− J cos θe−η +
g

2
√
πγ
, (9)

where η = 1/2γ2 + γ2δ2/8 and the pairs of canonical vari-
ables are (L, θ) and (γ2/8, δ), respectively. Thus we have

�L̇ = − J sin θe−η , �θ̇ = νL , �γ̇ = Jγδ cos θe−η,

�δ̇ =J cos θ
(

4
γ4

− δ2
)

e−η +
2g√
πγ3

− ν. (10)

The non-dispersive dynamics of the wave packet depicted
in the lower row of Figure 2 implies the (quasi)periodic
dynamics of the variables L, θ, γ and δ. In fact, for the cer-
tain range of the nonlinearity g and harmonic confinement
ν, there is a stable periodic orbit in the four-dimensional
phase space of the system (9), which comes through the
point δ = 0. The condition for the existence of this peri-
odic orbit is approximately given by the condition

g/ν =
√
πγ3/2, (11)

which means that the last two terms in the equation for δ
cancel each other. Examples of the discussed stable pe-
riodic orbits are shown in in the upper two panels of
Figure 5. In lower panels of Figure 5 we plot the stability
regions of the orbit together with the estimate (11). The
bright regions correspond to the quasiperiodic dynamics
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Fig. 5. (Color online) Upper panels: Poincaré cross section of
the effective system (9) for l∗ = 40 in the oscillating regime
with l0 = l∗/2 (left) and the rotating regime with l0 = 4l∗

(right). The periodic orbit is located in the centre of the sta-
bility island. Lower panels: the stability region of the depicted
periodic orbit in the (γ, g)–plane. The relative deviation ∆γ/γ
of the width γ averaged over the trajectory is shown in grey
scale (according to the colorbar). Additionally, the solid line
indicates the balance equation (11) and the broken line shows
the equilibrium width of the ground state BEC in the given
potential.

with small deviations of δ and γ. In the grey (red) regions
the deviations are large and in the dark (blue) regions the
dephasing δ increases without bounds. It is worth noting
that the variational ansatz (8) becomes invalid as soon as
the orbit is unbounded or badly bounded. On the other
hand, if δ(t) is captured around δ = 0 and γ is not too
small as it occurs near the centre of the stability island,
we have exp[−η(t)] ≈ 1 and equation (10) reduces to the
equation of motion for a classical pendulum.

Let us estimate the minimum strength of nonlinearity
needed in order to suppress dephasing. A coarse estimate
may be obtained by the requirement that the equilibrium
width of the wave packet is compatible with equation (11).
The minimum value gmin can be found by requiring that
the width γ obtained from equation (11) is equal to the
non-interacting equilibrium width. We obtain the condi-
tion

g ≥
√
πν7/4

25/2J3/4
≈ 0.31

(

ν7

J3

)1/4

. (12)

3.2 Numerical results

The above approach to the wave packet dynamics, which
is based on the effective Hamiltonian (9), may be still
oversimplified. For this reason and in order to check the
estimate (12) we run the DNLS for different values of the
nonlinearity g and harmonic confinement ν. In order to
reduce the number of independent parameters we have
also assumed that the shape of the initial wave packet is
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defined by the ground state of the BEC before shifting
the trap centre and, hence, the wave packet width γ is
no more an independent parameter (see the dashed line
in the stability diagrams in Fig. 5). The results of these
numerical studies can be summarised as follows:

(i) the effect of stabilisation is sensitive to the initial
shift of the packet l0 relative to the position of the
separatrix (4). In particular, no stabilisation was ob-
served for l0 ≈ l∗. This is actually not surprising —
the separatrix is the most fragile trajectory of the
pendulum and any tiny perturbation destroys it;

(ii) if l0 is sufficiently far away from the separatrix, there
is a finite interval of nonlinearity gmin < g < gmax

where the BEC oscillations are not decaying;
(iii) the lower boundary gmin is defined by the condi-

tion for appearance of a (non-negligible) stability is-
land for the effective system (8) and is approximately
given by equation (12);

(iv) the upper boundary gmax strongly depends on l0 and
sometimes is not well defined in the sense that for
a large g we find a transient or incomplete stabili-
sation. An example is seen in the lower right panel
of Figure 4 in the rapid increase of 1 − |ψ| for initial
values near l0 ≈ 80. This result (taken together with
the existence of the stability island) suggests, that
along with the stabilisation, the nonlinearity induces
a different process in the system which destroys the
regular oscillations of the condensate when g exceeds
some critical value. A more sophisticated approach
than the variational ansatz (8) is required to take
this effect into account.

A boundary for the stability of dipole oscillations was pro-
posed before in reference [5] by a simple argument based
on the modulational instability of plane wave states. This
argument lead to a critical value of l∗/

√
2 for the ini-

tial displacement. Our numerical calculations loosely sup-
port this estimate for g/J ≈ 1 (see the upper right panel
in Fig. 4) but also show additional dependence on g/J
and l∗ as well as significant deviations in other parameter
regimes.

It is important to realize, however, that instable mo-
tion below the separatrix (for l0 < l∗) and the associated
dephasing leads to a mean position of the wave packet at
the equilibrium position of the harmonic potential whereas
the stable or unstable motion above the separatrix (for
l0 > l∗) is characterised by a nonzero offset from the equi-
librium position. Hence both effects have very different
character.

3.3 Relation to Bloch oscillations of homogeneous
BEC

At this point we briefly mention the related problem of
the dynamical (modulational) instability that has been
studied in the context of the Bloch oscillations of a BEC
subjected to a static force F . In this case the mean-field
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Fig. 6. Stability diagram for Bloch oscillations in a homo-
geneous system. Here, geff = gN/L is an effective coupling
constant. The dashed line separates the “universal” regime of
weak forcing, where gcr = 3.0Fd, from the “non-universal”
regime of strong forcing, where gcr additionally depends on J .

equation corresponding to equation (7) reads

i�ȧl = −J
2

(al+1 + al−1) + g|al|2al + Fd l al, (13)

where d is the lattice constant and the initial particle num-
ber density |al|2 = N/L is assumed to be constant and
large compared to one; N and L are the number of parti-
cles and system size, respectively. Time-periodic solutions
of equation (13) correspond to Bloch oscillations and gen-
eralise the Bloch oscillations known from non-interacting
particles in periodic potentials. As shown in the recent pa-
pers [33,34], there is a critical value of the nonlinearity, be-
low which these Bloch oscillations are stable, while above
they are subject to a dynamical instability. This instabil-
ity scrambles the relative phases and leads to inhomoge-
neous, time-aperiodic density distributions. The stability
diagram of Figure 6 summarises the results.

Since the dynamics of the atoms in a parabolic lattice
for l0 � l∗ can be alternatively viewed as Bloch oscilla-
tions in a static field with the local magnitude F = νl0/d,
a rough estimate for the expected instability regime may
be drawn from this critical nonlinearity. However, an im-
portant difference between the two systems is that the
modulational instability analysis assumes a uniform state
γ → ∞, while in the pendulum dynamics the finiteness of
γ is a crucial ingredient. Indeed, numerical explorations
indicate that the parameter dependence is more compli-
cated, which makes this an interesting problem for further
study.

3.4 Relation to superfluidity

The concept of superfluidity rest on a rich phenomenology
rather than precise definitions [35]. As mentioned above,
we associate the emergence and breakdown of coherent
dynamics with superfluidity in this paper in alignment
with discussions in the recent literature related to cold
atom experiments. In contrast to the traditional approach
from condensed matter theory considering infinite systems
in the thermodynamic limit, we are dealing here with an
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intrinsically finite dynamical system for which the concept
of superfluidity yet has to be defined.

Clearly, a mere application of concepts borrowed from
the theory of infinite systems will not help here: as an
example we mention the Landau critical velocity, which
is bounded from above by the speed of sound vs, which
is a function of the density. In a local-density-type argu-
ment, we may consider the variation of the density over
the wave packet and conclude that the critical velocity for
the breakdown of superfluidity should vanish, as vs → 0
in the tails of the wave packet. Thus, we would not expect
superfluid transport even though we implicitly assume
that the atoms are completely Bose condensed by using
equation (6). Nevertheless, we predict coherent transport
in certain parameter regimes as discussed above.

A systematic study of the robustness of the superfluid
behaviour against energy dissipation from small impurities
is beyond the scope of the current paper but will constitute
an interesting extension of the present work.

4 Conclusions

In conclusion, we have considered the 1D dynamics of a
BEC of cold atoms in parabolic optical lattices. When in-
teractions are absent, this system realizes the quantum
pendulum (3) with the experimentally controllable effec-
tive Planck constant �eff = 2/l∗, where l∗ of equation (4)
characterises the pendulum separatrix. The parameter l∗
plays an important role both in theory and experiment.
In particular, the relation between l∗ and the trap centre
shift l0 = ∆x/d, used in the experiments to put the atoms
in motion, defines whether BEC oscillations are symmet-
ric with respect to the trap origin or not. The parameter
�eff = 2/l∗ also defines the rate of dephasing, because
of which BEC oscillations decay even in the absence of
atom-atom interactions. The effect of the latter on the
discussed dynamics appears to be nontrivial. Naively, one
would expect that any nonzero interaction enhances the
decay of BEC oscillations. However, this is not the case –
a moderate nonlinearity is found to stabilise the oscilla-
tions, which now can be described in terms of the classical
pendulum. The emergence of superfluid behaviour is thus
related to a quantum-classical transition. We believe that
for l0 < l∗ the stable regime of wave packet dynamics has
been actually realized in the experiment [6], where peri-
odic oscillations of a BEC with a frequency given by the
frequency of the classical pendulum have been observed
and interpreted as a superfluid phenomenon. In order to
see the transition to dephasing-dominated dynamics, the
experiments would have to work at lower particle num-
ber densities or reduce the nonlinear coupling constant,
e.g. with 7Li atoms [36], by tuning the atomic scattering
length by means of a magnetic Feshbach resonance. Most
surprisingly, stabilisation of wave packet motion may also
occur above the separatrix, which appears to not have
been observed yet.

One of us (AK) acknowledges support by the Deutsche
Forschungsgemeinschaft within the SPP1116.
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